Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes.
نویسندگان
چکیده
Simultaneous resistance of cancer cells to multiple cytotoxic drugs, multidrug resistance (MDR), is the major limitation to the successful chemotherapeutic treatment of disseminated neoplasms. The 'classical' MDR phenotype is conferred by MDR1/P-glycoprotein (MDR1/P-gp) that is expressed in almost 50% of human cancers. Recent developments in the use of small interfering RNAs for specific inhibition of gene expression have highlighted their potential use as therapeutic agents. DNA cassettes encoding RNA polymerase III promoter-driven siRNA-like short hairpin RNAs (shRNAs) allow long-term expression of therapeutic RNAs in targeted cells. A variety of viral vectors have been used to deliver such cassettes to mammalian cells. In this study, the construction of different adenoviruses for anti-MDR1/P-gp shRNA delivery in different human multidrug-resistant cancer cells was investigated. The efficiency of the shRNAs was compared to adenoviral delivery of an anti-MDR1/P-gp ribozyme construct. It could be demonstrated that MDR1/P-gp mRNA and protein expression could be completely inhibited by adenoviral delivery of anti-MDR1/P-gp shRNAs. This downregulation in mRNA and protein expression was accompanied by a complete inhibition of the pump activity of MDR1/P-gp and a reversal of the multidrug-resistant phenotype. By application of adenoviral encoded anti-MDR1/P-gp ribozyme construct merely weak effects on gene expression were observed. In conclusion, the data demonstrate that adenoviral delivery of shRNAs can chemosensitize human cancer cells, that adenoviral delivery of shRNAs is much more effective than adenoviral delivery of ribozymes, and that adenovirus-based vectors can be very effective agents for efficient delivery of therapeutic RNA molecules.
منابع مشابه
Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells
In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stabl...
متن کاملStrategies for inhibition of MDR1 gene expression.
Several distinct strategies have been used to modulate the expression of cancer-associated genes, including antisense oligonucleotides, small interfering RNAs (siRNAs), and artificial transcriptional factors. One major cause for chemotherapeutic treatment failure in cancer is the overexpression of P-glycoprotein, the product of the multidrug resistance gene MDR1. In this study, we tested the ab...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملBacterial Delivery of RNAi Effectors: Transkingdom RNAi
RNA interference (RNAi) represents a high effective mechanism for specific inhibition of mRNA expression. Besides its potential as a powerful laboratory tool, the RNAi pathway appears to be promising for therapeutic utilization. For development of RNA interference (RNAi)-based therapies, delivery of RNAi-mediating agents to target cells is one of the major obstacles. A novel strategy to overcom...
متن کاملFunctional gene-discovery systems based on libraries of hammerhead and hairpin ribozymes and short hairpin RNAs.
Abundant information about the nucleotide sequence of the human genome has become readily available and it is now necessary to develop methods for the identification of genes that are involved in important cellular, developmental and disease-related processes. Identification methods based on the activities of hammerhead and hairpin ribozymes and of short hairpin RNAs (shRNAs), whose target spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2007